A SPACE-EFFICIENT, LOCALITY-PRESERVING AND DYNAMIC DATA STRUCTURE FOR INDEXING *K*-MERS

Igor Martayan, Bastien Cazaux, Camille Marchet, Antoine Limasset

November 21, 2023

SeqBIM 2023 — Lille

MOTIVATION

Plenty of compact data structures for storing *k*-mers

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

MOTIVATION

Plenty of compact data structures for storing k-mers ...but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

[Conway & Bromage 11]

- we can see *k*-mers as integers in $\llbracket 4^k \rrbracket$ A \rightarrow 00 C \rightarrow 01 G \rightarrow 10 T \rightarrow 11
- since they're usually very sparse, we can use a sparse bitvector to store them

Limitations

- $\cdot\,$ it's not really dynamic
- \cdot it's not cache-efficient
 - index(ATAACGCCA) = 49,556
 - index(TAACGCCAT) = 198,227
 - \rightarrow average distance of $4^k/2$

[Conway & Bromage 11]

- we can see *k*-mers as integers in $\llbracket 4^k \rrbracket$ A \rightarrow 00 C \rightarrow 01 G \rightarrow 10 T \rightarrow 11
- since they're usually very sparse, we can use a sparse bitvector to store them

Limitations

- it's not really dynamic
- \cdot it's not cache-efficient
 - index(ATAACGCCA) = 49,556
 - index(TAACGCCAT) = 198,227
 - \rightarrow average distance of $4^k/2$

How can we improve this approach?

WISH LIST FOR AN IDEAL DATA STRUCTURE

- space-efficient: few bits / k-mer
- dynamic: support insertion and deletion after construction
- efficient queries:
 - membership
 - \cdot enumeration
 - \cdot insertion
 - \cdot (deletion)
- locality-preserving: reduce cache misses when querying consecutive *k*-mers

PRESERVING K-MER LOCALITY

A LOCALITY-PRESERVING ENCODING OF K-MERS

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces The necklace of x is its smallest cyclic rotation $\langle x \rangle = \min_{0 \le i < k} x^{(i)}$

Alternative encoding based on necklaces The necklace of x is its smallest cyclic rotation $\langle x \rangle = \min_{0 \le i \le k} x^{(i)}$

- $x \mapsto (\langle x \rangle, \text{rotation index})$ is a bijective transformation
- necklaces of consecutive k-mers share long prefixes

AACGTCATCTCTCATTCTGGTCGTTCTTCCT AACGTCATCTCTCATTCTGTTCGTTCTTCCT AACGTCATCTCTCATTCTGTGCGTTCTTCCT AACGTCATCTCTCATTCTGTGAGTTCTTCCT AACGTCATCTCTCATTCTGTGACTTCTTCCT AACGTCATCTCTCATTCTGTGACATCTTCCT AACGTCATCTCTCATTCTGTGACACCTTCCT AACGTCATCTCTCATTCTGTGACACGTTCCT AACGTCATCTCTCATTCTGTGACACGCTCCT AACGTCATCTCTCATTCTGTGACACGCACCT AACGTCATCTCTCATTCTGTGACACGCAGCT AACGTCATCTCTCATTCTGTGACACGCAGGT **AACGTCATCTCTCATTCTGTGACACGCAGG** ACACGCAGGGTACGTCATCTCTCATTCTGTG

The number of necklaces of size k on an alphabet with σ letters is $\sim \frac{\sigma^k}{k}$ so only a fraction $\frac{1}{k}$ of the universe is actually used

The number of necklaces of size k on an alphabet with σ letters is $\sim \frac{\sigma^k}{k}$ so only a fraction $\frac{1}{k}$ of the universe is actually used

Ranking: given a necklace $\langle x \rangle$, find *i* s.t. $\langle x \rangle$ is the *i*-th smallest necklace of size *k* We can compute the rank in $\mathcal{O}(k^2)$ time [Sawada & Williams 17] (Can we do better? for batch queries maybe?)

Tradeoff: better compression + locality vs $\mathcal{O}(k^2)$ queries

COMPRESSING SPARSE INTEGER SETS

[Elias 74, Fano 71]

- \cdot separate the high bits and low bits
- · compress them with different methods

We choose the size of the low bits as $l = \left[\lg \frac{u}{n} \right]$

- *n* is the number of elements
- u is the size of the universe e.g. $u = 4^k$ for k-mers

 $\{2, 3, 210, 216, 231, 265, 491, 499\}$ 000 0000010 000 000011 011 010010 slowly 011 011000 increasing | 011 | 100111 100:001001 111 101011 111 110011

ALMOST OPTIMAL SPACE USAGE

Space usage of Elias-Fano

$$EF(n, u) = 2n + n \left[\lg \frac{u}{n} \right]$$

e.g. for $n = 10^{10}$ and $u = 4^{31}$, EF uses 31 bits / item

Information theoretic lower bound

$$\lg \begin{pmatrix} u \\ n \end{pmatrix} \approx n \lg e + n \lg \frac{u}{n}$$
$$\approx 1.44n + n \lg \frac{u}{n}$$

Note that the bound can get lower if we have additional knowledge about the distribution.

PARTITIONING SPARSE INTEGER SETS

lot of empty regions

Split the sequence into smaller blocks

Split the sequence into smaller blocks, choose the best encoding:

- for sparse blocks: Elias-Fano ; $2n + n \left[\lg \frac{u}{n} \right]$ bits
- for dense blocks: plain bitset ; *u* bits
- for full blocks: lower bound + size is enough

Split the sequence into smaller blocks, choose the best encoding:

- for sparse blocks: Elias-Fano ; $2n + n \left[\lg \frac{u}{n} \right]$ bits
- for dense blocks: plain bitset ; *u* bits
- for full blocks: lower bound + size is enough

Computing the optimal partition

- optimal solution in $\mathcal{O}(n^2)$ using dynamic programming
- $(1 + \varepsilon)$ -approximation in $\mathcal{O}\left(n \cdot \frac{1}{\varepsilon} \ln \frac{1}{\varepsilon}\right)$

[Pibiri & Venturini 17] presents an approach to make the partitions dynamic using o(n) extra space

 \rightarrow WIP, no practical implementation available yet

Query complexity

- membership and successor in $O(\lg \lg n)$
- insertion and deletion in $\mathcal{O}(\lg n / \lg \lg n)$

[Pibiri & Venturini 17] presents an approach to make the partitions dynamic using o(n) extra space

 \rightarrow WIP, no practical implementation available yet

Query complexity

- membership and successor in $O(\lg \lg n)$
- insertion and deletion in $\mathcal{O}(\lg n / \lg \lg n)$

- \cdot ranking saves $\lg k$ bits / k-mer but costs $\mathcal{O}(k^2)$ / query
- partitioning typically saves $\frac{1}{2} \lg k$ bits / k-mer

CONCLUSION

Using necklaces to represent k-mers

- preserves locality
- improves compression

Partitioned sparse sets

- \cdot fit in well with necklace locality
- can support dynamic operations

Future steps

- efficient implementation of the dynamic partitions
- \cdot batch necklace computation
- \cdot batch rank computation
- subquadratic ranking?
- bound on the necklace distance

Using necklaces to represent k-mers

- preserves locality
- improves compression

Partitioned sparse sets

- \cdot fit in well with necklace locality
- can support dynamic operations

Future steps

- efficient implementation of the dynamic partitions
- \cdot batch necklace computation
- \cdot batch rank computation
- subquadratic ranking?
- bound on the necklace distance

Thank you!

APPENDIX

REFERENCES I

- Alanko, Jarno N, Simon J Puglisi & Jaakko Vuohtoniemi (2022). "Succinct k-mer sets using subset rank queries on the spectral burrows-wheeler transform". In: *bioRxiv*, pp. 2022–05.
- Conway, Thomas C & Andrew J Bromage (2011). **"Succinct data structures for assembling large genomes".** In: *Bioinformatics* 27.4, pp. 479–486.
- Elias, Peter (1974). "Efficient storage and retrieval by content and address of static files". In: *Journal of the ACM (JACM)* 21.2, pp. 246–260.
- Fano, Robert Mario (1971). *On the number of bits required to implement an associative memory.* Massachusetts Institute of Technology, Project MAC.
- Ferragina, Paolo, Igor Nitto & Rossano Venturini (2011). **"On optimally partitioning a text to improve its compression".** In: *Algorithmica* 61, pp. 51–74.

Ottaviano, Giuseppe & Rossano Venturini (2014). **"Partitioned elias-fano indexes".** In: Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, pp. 273–282.

- Pibiri, Giulio Ermanno & Rossano Venturini (2017). "Dynamic elias-fano representation". In:
 28th Annual symposium on combinatorial pattern matching (CPM 2017). Schloss
 Dagstuhl-Leibniz-Zentrum fuer Informatik.
- Sawada, Joe & Aaron Williams (2017). **"Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences".** In: Journal of Discrete Algorithms 43, pp. 95–110.

A CLOSER LOOK AT ELIAS-FANO ENCODING [ELIAS 74, FANO 71]

 $S = \{2, 3, 251, 403, 406, 407, 995, 999\}$ n = 8 u = 1000 $l = \left[\lg \frac{u}{n} \right] = 7$ bits

Optimal partition as a shortest path [Ferragina et al. 11]

- $\cdot \ \ V = [\![1, n]\!] \quad E = \{ i < j \, ; \, i, j \in \ V \}$
- $w_{i,j} = \text{cost to encode } S[i, j]$

Computing the optimal partition

- optimal solution in $\mathcal{O}(|V| + |E|) = \mathcal{O}(n^2)$ using dynamic programming
- $(1 + \varepsilon)$ -approximation in $\mathcal{O}(n \cdot \frac{1}{\varepsilon} \ln \frac{1}{\varepsilon})$ by sparsifying the graph