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MOTIVATION

Plenty of compact data structures for storing k-mers

…but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]
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REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11]
• we can see k-mers as integers in

q
4ky

A → 00 C → 01 G → 10 T → 11
• since they’re usually very sparse, we can
use a sparse bitvector to store them

Limitations
• it’s not really dynamic
• it’s not cache-efficient

• index(ATAACGCCA ) = 49,556
• index( TAACGCCAT) = 198,227

→ average distance of 4k/2

How can we improve this approach?
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WISH LIST FOR AN IDEAL DATA STRUCTURE

• space-efficient: few bits / k-mer
• dynamic: support insertion and deletion after construction

• efficient queries:
• membership
• enumeration
• insertion
• (deletion)

• locality-preserving: reduce cache misses
when querying consecutive k-mers

CTGAAATG…
CTGAA
TGAAA
GAAAT
AAATG

batch queries
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PRESERVING K-MER LOCALITY



A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG

AACCT
AACGT

necklaces

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation 〈x〉 = min

0⩽i<k
x(i)

• x 7→ (〈x〉, rotation index) is a bijective transformation
• necklaces of consecutive k-mers share long prefixes
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A CLOSER LOOK AT THE LOCALITY OF NECKLACES

AACGTCATCTCTCATTCTGGTCGTTCTTCCT
AACGTCATCTCTCATTCTGTTCGTTCTTCCT
AACGTCATCTCTCATTCTGTGCGTTCTTCCT
AACGTCATCTCTCATTCTGTGAGTTCTTCCT
AACGTCATCTCTCATTCTGTGACTTCTTCCT
AACGTCATCTCTCATTCTGTGACATCTTCCT
AACGTCATCTCTCATTCTGTGACACCTTCCT
AACGTCATCTCTCATTCTGTGACACGTTCCT
AACGTCATCTCTCATTCTGTGACACGCTCCT
AACGTCATCTCTCATTCTGTGACACGCACCT
AACGTCATCTCTCATTCTGTGACACGCAGCT
AACGTCATCTCTCATTCTGTGACACGCAGGT
AACGTCATCTCTCATTCTGTGACACGCAGGG
ACACGCAGGGTACGTCATCTCTCATTCTGTG

0 20 40 60 80 100
0

10

20

30

Size of common prefix
 between necklaces of successive k-mers (k = 31)
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RANKING NECKLACES TO IMPROVE COMPRESSION

The number of necklaces of size k on an alphabet with σ letters is ∼ σk

k
so only a fraction 1

k of the universe is actually used

AAAA CCCC GGGG TTTT

Ranking: given a necklace 〈x〉, find i s.t. 〈x〉 is the i-th smallest necklace of size k
We can compute the rank in O

(
k2) time [Sawada & Williams 17]

(Can we do better? for batch queries maybe?)

Tradeoff: better compression + locality vs O
(
k2) queries
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COMPRESSING SPARSE INTEGER SETS



COMPRESSING SPARSE INTEGER SETS WITH ELIAS-FANO ENCODING

[Elias 74, Fano 71]
• separate the high bits and low bits
• compress them with different methods

We choose the size of the low bits as l =
⌈
lg

u
n

⌉
• n is the number of elements
• u is the size of the universe
e.g. u = 4k for k-mers

{2, 3, 210, 216, 231, 265, 491, 499}
000 000010
000 000011
011 010010
011 011000
011 100111
100 001001
111 101011
111 110011

slowly
increasing

l
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ALMOST OPTIMAL SPACE USAGE

Space usage of Elias-Fano

EF(n, u) = 2n + n
⌈
lg

u
n

⌉
e.g. for n = 1010 and u = 431, EF uses 31 bits / item

Information theoretic lower bound

lg

(
u
n

)
≈ n lg e + n lg

u
n

≈ 1.44n + n lg
u
n

Note that the bound can get lower if we have
additional knowledge about the distribution.
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PARTITIONING SPARSE INTEGER SETS



PARTITIONING SPARSE INTEGER SETS [OTTAVIANO & VENTURINI 14]

lot of empty regions

Split the sequence into smaller blocks, choose the best encoding:
• for sparse blocks: Elias-Fano ; 2n + n

⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

Computing the optimal partition

• optimal solution in O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)
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DYNAMIC VERSION & COMPLEXITY RECAP [PIBIRI & VENTURINI 17]

[Pibiri & Venturini 17] presents an approach to make
the partitions dynamic using o(n) extra space

→ WIP, no practical implementation available yet

Query complexity
• membership and successor in O(lg lg n)
• insertion and deletion in O(lg n / lg lg n)
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PARTITIONING NECKLACES: A SIMPLE ALTERNATIVE TO RANKING

AAAA CCCC GGGG TTTT

• ranking saves lg k bits / k-mer but costs O
(
k2) / query

• partitioning typically saves 1
2 lg k bits / k-mer
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CONCLUSION



TAKE-HOME MESSAGES

Using necklaces to represent k-mers
• preserves locality
• improves compression

Partitioned sparse sets
• fit in well with necklace locality
• can support dynamic operations

Future steps
• efficient implementation of the
dynamic partitions

• batch necklace computation
• batch rank computation
• subquadratic ranking?
• bound on the necklace distance

Thank you!
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A CLOSER LOOK AT ELIAS-FANO ENCODING [ELIAS 74, FANO 71]

S = {2, 3, 251, 403, 406, 407, 995, 999} n = 8 u = 1000 l =
⌈
lg u

n
⌉
= 7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111

hi li

n × l bits

hi + i

2n bits

(hi ≤ u
2l ≤ n)



OPTIMAL PARTITION AS A SHORTEST PATH [FERRAGINA ET AL. 11]

• V = J1,nK E = {i < j ; i, j ∈ V}
• wi,j = cost to encode S[i, j] 1 2 … i … n

Computing the optimal partition

• optimal solution in O(|V|+ |E|) = O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)
by sparsifying the graph
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