

Université de Lille

Kmer2Reads, an associative index for Third Generation Sequencing data

Léa Vandamme, Bastien Cazaux and Antoine Limasset

Univ. Lille, CNRS, UMR 9189 - CRIStAL, F-59000 Lille

SeqBIM

November 21, 2023

Long reads properties :

- Error rate : from ~0.1% to

~10%

- Length : 10 - 100 kilo bases

Hard task

K-mer to reads index

Select reads similar to our query sequence

- Select reads **sharing k-mers** with our query sequence
 - └⇒ Use **k-mer to reads** index

State of the art

Hashing methods (based on hash tables / MPHF)

Use example: Pufferfish (Almodaresi, 2018), SRC (Marchet, 2020), BLight (Marchet, 2021),

O O Reads

Full text indexing (locate occurrences of pattern in a text)

	text row_row_your_boat row row row your boat	
	row_row_row_your_boat\$	Variant of FM-index : r-index (Mun, 2020)
Locate occurrences of patterns in a text	trrrwwwwwwwwooobbbyyyrrrrrrruutt\$aaaooooooooooo	
	Compression through run length encoding $(t,1)(r,3)(w,9)(o,3) \dots (,3)$	

State of the art

	Construction	Memory	Debit
Hashing methods (SRC)			
Full-text indexing (r-index)			~

Challenge :

Scale to large genomes (Human genome = 100 million bp, 10 million reads)

Limit memory and time cost

A naive version ?

(Similar k-mers)

Our contributrions

Similar k-mers ?

Ecoli (error rate 1%, coverage = 100X, read length = 10000) :

- K-mers : 4,553,982
- M-mers : 443,123

1 order of magnitude

False positives ?

Dataset : Ecoli (error rate 1%, coverage = 100X, read length = 10000), seuil : 0.6 Query : sequence of length 50bp, extracted from a read

- Nombre reads total : 46.396
- Potential hits : 91
- Reads deleted : 1

Duplicated colors ?

Color = List of read IDs

Index distinct colors

Dataset : Ecoli (error rate 1%, coverage = 100X, read length = 10000), seuil : 0.6 Query : sequence of length 50bp, extracted from a read

- M-mer number : 443,123
- Color number : 88,345

1 order of magnitude

Large ID lists ?

TurboPFor Delta encoding :

[1, 1000, 1005, 1024, 1025, 1034] -> [1, 999, 5, 19, 1, 9]

1 order of magnitude

Our tool : K2R

Error rate 1%, coverage = 100X, read length = 10.000

Dataset	K-mer number	M-mer number	Color number
E.Coli	4,553,982	443,123	88,345
C.Elegans	94,006,409	6,338,436	4,475,066

Results : memory & time

Index creation Parameters : error rate 1%, read length = 10.000bp Dataset C.Elegans : 100X

Results : comparison

Results : comparison

Index files on disk

Index creation :

- C.Elegans (100.3MB) : error rate 1%, read length = 10.000bp.

Coverage	Read FASTA file size (Go)	M-mer binary file size	Color binary file size	Total	Total / input
10	0.958	0.057	0.168	0.225	0.23
50	4.7	0.137	0.901	1.038	0.22
100	9.4	0.218	1.8	2.018	0.21
150	15	0.278	2.6	2.878	0.19
200	19	0.324	3.4	3.724	0.19

Conclusion

	Construction	Memory	Debit
Read Connector	✓	*	\checkmark
r-index	*	✓	~
K2r	✓	~	✓

Perspectives

Sorting reads

→ Improve delta encoding

- Bottleneck : memory (challenge r-index ?)
- > Soon : article
- > Applications : open to collaborations :)

Goals

Associate k-mers to reads, in order to study genome sequences from raw reads

Etat de l'art

- Hashing methods (memory expensive)
- Full-text indexing (hard to construct)

Take home messages

Solutions

- Minimizers (False positives are managed)
- > Colors
- > Compression

