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Challenge: Genomic data grow faster than computational

Development of sequencing
technologies leads to exponential
growth of genomic data

BLAST and its successors don’t
keep up
o small database, not scalable
to modern data
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Conseguence: Proportion of searchable bacteria
decreases exponentially
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[Bfinda et al, BioRxiv, 2023]



Genome compression widely studied, but existing compressors
unscalable to modern bacterial collections

Rich toolbox of compression techniques
reviews: [Giancarlo&Scaturro, 2009], [Deorowicz&Grabowski, 2013], [Giancarlo&al., 2013], [Zhu&al., 2015], ...

e Dictionary compression — using a dictionary of repetitive phrases
o  General: gzip, bzip2, Izma/xz/7z,...
o  Specialized: mbgc [GigaScience, 2022], AGC [Bioinformatics, 2023]

e Statistical compressors
o E.g., GeCo3 based on neural networks [GigaScience, 2020]

e K-mer-based tools
o E.g., Metagraph [Karasikov et al, BioRxiv, 2020], Themisto [Alanko et al, Bioinformatics, 2023], Fulgor [Fan et
al, bioRxiv, 2023]

General issue:
Difficult to identify redundancies in a scalable manner
across millions of genomes of variable diversity



Why is it difficult to detect redundancies / compress?

Example: compression of k-mer matrices
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Recent breakthrough: phylogenetic compression

Key idea: Reversible reordering of input data Lish, g m
according to their evolutionary history, in order 2NN R
to simplify compression by existing tools '

Memanospirmum

Makes data almost trivially compressible

Highly general, applicable to assemblies, de
Bruijn graphs, Bloom filters, ...
Can be instantiated to individual protocols for
different data types & use-cases B DR



k-mers

Example protocol: simplified protocol for k-mer matrices

Genomes
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k-mer matrix

phylogeny estimated by
Sketching + neighbor joining
(MashTree)
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by some method, e.g.,
- advanced (eg XZ2)
- simple (eg RLE)



On modern collections, phylogenetic compression
improves state-of-the-art by 1-2 orders of magnitude
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What does phylogenetic compression
do on a mathematical level?



Methodology: Mathematical modeling of phylogenetic
compression

In our case:

modeling the structure of input data > infinite-site model

fixing one genome data representation
fixing one protocol of phylogenetic k-mer matrices

COmpreSSion \

studying compression as an 1. phylogeny approximated
optimization problem via Mashtree
2. left-to-right reordering

comparing compression with and
without guiding by evolutionary history
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run-length encoding

10



Component 1: Data modeling by infinite-site model

(with substitutions)

Infinite number of positions
(=genomes sufficiently long)
Each new substitution
occurs at a novel position
No recombination

Models realistically
oversampled parts of the tree

of life (e.g., data from hospital
outbreaks)
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Consequence 1: genome distances perfectly explained by
the tree

Genomes’ distance Common ancestor

# distinct mutated positions

Distance: 3
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Consequence 2: tree perfectly inferable from input

genomes by Neighbor Joining
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[Saitou&Nei, Molecular Biology
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Assuming additive distances
between observed genomes
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Guaranteed to infer one
evolutionary tree perfectly

describing the distances ,



Component 2: Representing genomes via binary matrices

We work with k-mer matrices, but for simplicity for now let's assume mutational
matrix

Mutational k-mer

Genomes matrix matrix
G1G2G3 G4 G5 Positions k-mers
70 00 0 1\ 1 AACGT..
1 0 0 1 O 2 ACAGG..
O 10 0 O 3 AGCGT..
O 01 0 O 4 CATGA..
O 11 0 O 5 CAGCC..
O 00 1 O 6 CAGGT..
O 00 O O 7 CTGCG..
NT—1 00 0 0 8 GGAGT..
O 11 0 1 9 GTAGT..
O 00 O O 10 GATGT..

/
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Component 3: Compression by Run-Length Encoding (RLE)

Principle: encoding lengths of runs of identical characters

1/1/1/0/0/1/0/0|0|0| —— [|3|2|1|4
Compressing matrix: RLE of individual rows
# runs
00 |0 |0 |1] — |41 5
110[0[1]0| —= [1/2|1]|1 4
o(1]|0|0|0|] — 11/1 3 3
0|0 |1]0|0| —> |29 2 3
O 1|1 0| 1| =—/= 1|2 1 1 4

#runs =4

Compressed size

# runs

15



Quick recap:

We have:

e Input: genome collection, modeled by the infinite-site model,
represented in a binary matrix
Low-level compressor: RLE
Phylogenetic compression protocol: column reordering left-to-right
according to the NJ tree

Want to compare:

e no phylogenetic compression (random order)
e phylogenetic compression (left-to-right order with respect to phylogeny)
e optimal compression (mathematically optimal order minimizing size of RLE)
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Property of binary matrices

#Runs corresponds to Hamming distance
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Hamming distance: 1

(= # distinct characters)

#runs: 1+2
Z # runs = # rows + Z Ham(i, j)
rows adjacent

cols i, |

Minimizing # runs

Minimizing columns’ cumulative Hamming distances

Solving Traveling Salesman Problem (TSP)
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Travelling Salesman Problem (TSP)

What's the shortest possible route between cities (=genomes)?
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Travelling Salesman Problem (TSP)

Generally NP-hard, but good approximation algorithms as well as efficient solvers exist

(e.g, Concorde [Cook et al., 1997])
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(Note: NP-hardness in our specific case of matrix column reordering unclear)



Main result: phylogenetic compression solves this TSP
iInstance optimally

Theorem: Shortest path in the TSP =
left-to-right order in the NJ phylogeny

Consequence: Phylogenetic compression
provides optimal RLE of input genomes

Distances perfectly explained
by our unique inferred tree =>
what is the shortest leaves

traversal? -



Evaluation with experimental data



Our idealized model vs. Reality

bacterial genomes not infinite

horizontal gene transfer in bacteria

other mutations than point mutations
mutations may occur in a close proximity
efc. etc.

e Infinite-site model for point
mutations + k-mer matrices

How well do our mathematical models explain
real data?

(Is phylogenetic compression still (near-)optimal?)
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With RLE as a low-level compressor:
Phylogenetic compression near-optimal for single species
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Conclusions
Effectivity of the phylogenetic compression is supported by the evolutionary
processes and profound mathematical principles
Data resulting from evolutionary processes feature a tree-like structure

Phylogenies well approximate the geometry of microbial genome space
locally

Our long-term vision: using these principles to develop efficient
entropy-scaling algorithms to achieve search sublinearity
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Thank you for your attention!

y 4

& IRISA

Universiteé
de Rennes

@ Erasmus+

25



