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Challenge: Genomic data grow faster than computational 
capacities

● Development of sequencing 
technologies leads to exponential 
growth of genomic data

● BLAST and its successors don’t 
keep up

○ small database, not scalable 
to modern data
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https://pascal-martin.netlify.app/post/plotting-sra-database-growth/



Consequence: Proportion of searchable bacteria 
decreases exponentially

[Břinda et al, BioRxiv, 2023] 3



Genome compression widely studied, but existing compressors 
unscalable to modern bacterial collections (millions of genomes, high-divers.)

Rich toolbox of compression techniques
reviews: [Giancarlo&Scaturro, 2009], [Deorowicz&Grabowski, 2013], [Giancarlo&al., 2013], [Zhu&al., 2015], …

● Dictionary compression – using a dictionary of repetitive phrases
○ General: gzip, bzip2, lzma/xz/7z,...
○ Specialized: mbgc [GigaScience, 2022], AGC [Bioinformatics, 2023]

● Statistical compressors
○ E.g., GeCo3 based on neural networks [GigaScience, 2020]

● K-mer-based tools
○ E.g., Metagraph [Karasikov et al, BioRxiv, 2020], Themisto [Alanko et al, Bioinformatics, 2023], Fulgor [Fan et 

al, bioRxiv, 2023]

General issue:
Difficult to identify redundancies in a scalable manner 

across millions of genomes of variable diversity 4



Example (661k collection):
661k ⨉ 44.3 G

= 3.6 petabytes (if stored as 8 
values in 1 byte)

Why is it difficult to detect redundancies / compress?

k-mer

AAGC
AGTC
GAAA

…

Gen
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e 1

Gen
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e 2

“size” of genome collection

“diversity”
of genome 
collection

For microbial data huge 
in both dimensions

Analogical to dictionary size 
in LZ-based methods
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Example: compression of k-mer matrices



Recent breakthrough: phylogenetic compression

Makes data almost trivially compressible

Highly general, applicable to assemblies, de 
Bruijn graphs, Bloom filters, …

Can be instantiated to individual protocols for 
different data types & use-cases

Key idea: Reversible reordering of input data 
according to their evolutionary history, in order 

to simplify compression by existing tools

6



by some method, e.g.,
- advanced (eg XZ)
- simple (eg RLE)

Example protocol: simplified protocol for k-mer matrices

Genomes

k-
m

er
s

k-mer matrix

phylogeny estimated by
sketching + neighbor joining

(MashTree)
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(Note: Protocols for large collections are more complex and involve clustering by metagenomics, see [Břinda et al., 2023])



On modern collections, phylogenetic compression 
improves state-of-the-art by 1–2 orders of magnitude

Fundamental question:
Which mathematical 
principles drive these 

improvements? 8



What does phylogenetic compression
do on a mathematical level?
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1. phylogeny approximated
via Mashtree

2. left-to-right reordering
3. run-length encoding

I. modeling the structure of input data

II. fixing one genome data representation

III. fixing one protocol of phylogenetic 
compression

IV. studying compression as an 
optimization problem

V. comparing compression with and 
without guiding by evolutionary history

Methodology: Mathematical modeling of phylogenetic 
compression

In our case:

k-mer matrices

infinite-site model
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1. Infinite number of positions 
(≈genomes sufficiently long)

2. Each new substitution
occurs at a novel position

3. No recombination

● Models realistically 
oversampled parts of the tree 
of life (e.g., data from hospital 
outbreaks)

Component 1: Data modeling by infinite-site model
(with substitutions)

Common ancestor

Observed 
genomes

11



Consequence 1: genome distances perfectly explained by 
the tree (i.e, so-called additive distances)
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Common ancestor

Distance: 5

2 1

1 1

1 1

2 1

Distance: ?

Genomes’ distance
=

# distinct mutated positions
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Consequence 2: tree perfectly inferable from input 
genomes by Neighbor Joining

13

G1 G2 G3 G4 G5

Assuming additive distances 
between observed genomes

Neighbor Joining

Guaranteed to infer one 
evolutionary tree perfectly 
describing the distances

G4
G5

G2
G3

G12
2 1
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1
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[Saitou&Nei, Molecular Biology 
and Evolution, 1987]



Component 2: Representing genomes via binary matrices

Genomes
G1 G2 G3 G4 G5 Positions

1
2
3
4
5
6
7
8
9

10
…

0
1
0
0
0
1
0
0
0
0
…

0
1
0
0
0
0
0
1
0
0
…

1
0
0
0
0
0
0
0
1
0
…

0
0
1
0
1
0
0
0
1
0
…

0
0
0
1
1
0
0
0
1
0
…

Mutational 
matrix

k-mers

AACGT..
ACAGG..
AGCGT..
CATGA..
CAGCC..
CAGGT..
CTGCG..
GGAGT..
GTAGT..
GATGT..
…

k-mer 
matrix
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We work with k-mer matrices, but for simplicity for now let’s assume mutational 
matrix 



Component 3: Compression by Run-Length Encoding (RLE)

Principle: encoding lengths of runs of identical characters

1 1 1 0 0 1 0 0 0 0 3 2 1 4

Compressing matrix: RLE of individual rows

Compressed size
=

# runs

0 0 0 0 1

1 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 1 1 0 1

# runs
2

4

3

3

4

# runs = 4
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We have:

● Input: genome collection, modeled by the infinite-site model,
represented in a binary matrix

● Low-level compressor: RLE
● Phylogenetic compression protocol: column reordering left-to-right 

according to the NJ tree

Want to compare:

● no phylogenetic compression (random order)
● phylogenetic compression (left-to-right order with respect to phylogeny)
● optimal compression (mathematically optimal order minimizing size of RLE)

Quick recap:
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Property of binary matrices
#Runs corresponds to Hamming distance

 G1 G2 G3 G4 G5 …

0
1
0
0
0
1
0
0
0
0
…

0
1
0
0
0
0
0
0
0
0
…

1
0
0
0
0
0
0
0
1
0
…

0
0
1
0
1
0
0
0
1
0
…

0
0
0
1
1
0
0
0
1
0
…

Minimizing # runs
=

Minimizing columns’ cumulative Hamming distances
=

Solving Traveling Salesman Problem (TSP)
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Hamming distance: 1
(= # distinct characters)

#runs: 1+2



Travelling Salesman Problem (TSP)
What’s the shortest possible route between cities (=genomes)? 
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Travelling Salesman Problem (TSP)

Generally NP-hard, but good approximation algorithms as well as efficient solvers exist
(e.g, Concorde [Cook et al., 1997])

Heuristic solution Optimal solution

19(Note: NP-hardness in our specific case of matrix column reordering unclear)



Main result: phylogenetic compression solves this TSP 
instance optimally

Consequence: Phylogenetic compression 
provides optimal RLE of input genomes

Theorem: Shortest path in the TSP = 
left-to-right order in the NJ phylogeny
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Distances perfectly explained 
by our unique inferred tree => 

what is the shortest leaves 
traversal?

G4
G5

G2
G3

G12
2 1
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Evaluation with experimental data
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● Infinite-site model for point 
mutations + k-mer matrices

Our idealized model vs. Reality

How well do our mathematical models explain 
real data?

(Is phylogenetic compression still (near-)optimal?)
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● bacterial genomes not infinite
● horizontal gene transfer in bacteria
● other mutations than point mutations
● mutations may occur in a close proximity
● etc. etc.



With RLE as a low-level compressor:
Phylogenetic compression near-optimal for single species

Neisseria gonorrhoeae, n=1,102 genomes, k=20 23

Consequence:
Phylogenies 

near-perfectly 
locally 

approximate the 
geometry of the 
bacterial genome 

space

#R
LE

 ru
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 [m
ill
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]

Standard Phylogenetic 
compression

(Gubbins + RAxML)

TSPProtocol: Phylogenetic 
compression
(NJ–MashTree)



Conclusions

● Effectivity of the phylogenetic compression is supported by the evolutionary 
processes and profound mathematical principles

● Data resulting from evolutionary processes feature a tree-like structure

● Phylogenies well approximate the geometry of microbial genome space 
locally

● Our long-term vision: using these principles to develop efficient 
entropy-scaling algorithms to achieve search sublinearity
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Thank you for your attention!
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Karel Břinda


