Towards solving the peptidomics problem with ProSpect

Emile Benoist¹, Géraldine Jean¹, Hélène Rogniaux², Guillaume Fertin¹, Dominique Tessier²

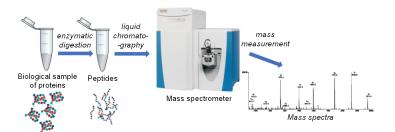
1.Nantes Université, LS2N (UMR 6004), team ComBi, Nantes, France 2.Inrae, BIA (UR 1268), Nantes, France {emile.benoist,geraldine.jean,guillaume.fertin}@univ-nantes.fr, {dominique.tessier,helene.rogniaux}@inrae.fr

Monday November 20th 2023

1 / 25

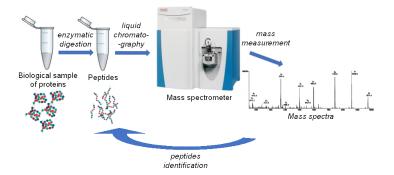
Intro

Peptidomics:

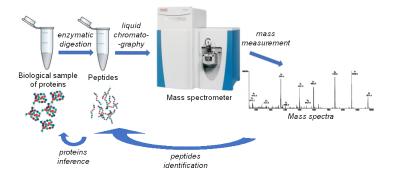

The branch of proteomics dedicated to identifying peptides (i.e., small protein fragments), in a given organism.

(proteomics \rightarrow the discipline aiming at identifying proteins in a given organism)

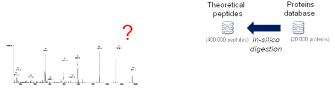
protein: long amino acid sequence (more than 50) MLPPA......KRNIL


peptide: small amino acid sequence (not more than a few tens) LPPQETPK

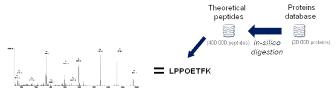
How identify the proteins of a sample ? (proteomics)



< ∃→

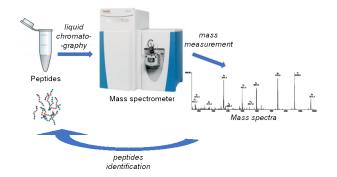

How identify the proteins of a sample ? (proteomics)

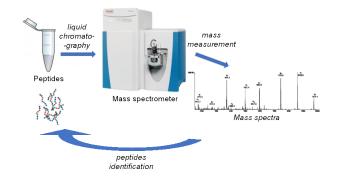
How identify the proteins of a sample ? (proteomics)


Identify a spectrum using a proteins database (proteomics)

not set to example a sub-later

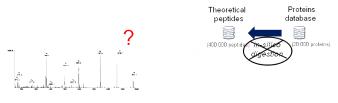
<ロト < 部ト < 言ト < 言ト 言 のへで 4 / 25


Identify a spectrum using a proteins database (proteomics)


PSM (Peptide-Spectrum-Match)

<ロト < 部ト < 言ト < 言ト 言 のへで 4 / 25

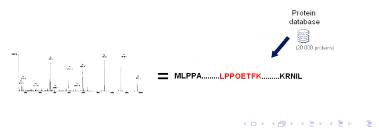
How identify the peptides of a sample ? (peptidomics)



How identify the peptides of a sample ? (peptidomics)

 $\rightarrow \underline{\text{Our objective:}}$ implement an algorithm (ProSpect) for the identification of peptides in peptidomics

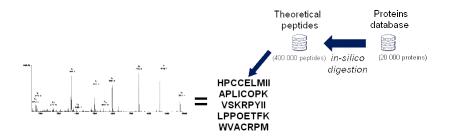

 \rightarrow First problem: in-silico digestion is infeasible


stabilities and see the second stabilities and sta

□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

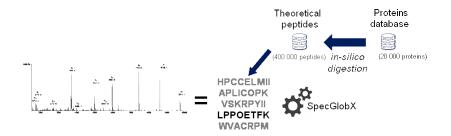
 \rightarrow First problem: in-silico digestion is infeasible

 \rightarrow <u>Our solution</u>: compare the spectra directly with the proteins

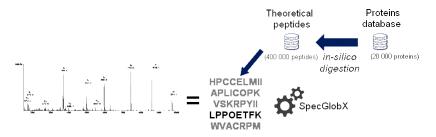

 \rightarrow Second problem: peptides in a biological sample of peptidomics are more likely to carry modifications (alteration of their structure or sequence)

 \rightarrow <u>Second problem</u>: peptides in a biological sample of peptidomics are more likely to carry modifications (alteration of their structure or sequence)

 \rightarrow <u>Our solution:</u> be based on SpecGlobX *, an algorithm used in proteomics for a better identification of modified peptides


* G. Prunier, M. Cherkaoui, A. Lysiak, O. Langella, M. Blein-Nicolas, V. Lollier, E. Benoist, G. Jean, G. Fertin, H. Rogniaux, and D. Tessier, "Fast alignment of mass spectra in large proteomics datasets, capturing dissimilarities arising from multiple complex modifications of peptides," bioRxiv, 2023. [Online]. Available: https://www.biorxiv.org/content/earl/2023/03/12/2023.03.09.531667

How SpecGlobX can be used ?


8 / 25

How SpecGlobX can be used ?

(日)

How SpecGlobX can be used ?

 \times SpecGlobX directly apply for each couple spectrum-peptide would give too high execution times

A problem of scale

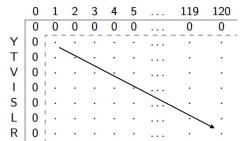
- \rightarrow Without any improvement:
 - normal size of a peptidomics dataset: at least 1 billion of PSMs (50 000 spectra, 20 000 proteins)
 - SpecGlobX processes 1 million of PSMs in 10 minutes (1 thread)
 - 1 protein pprox 40 peptides
 - $\hookrightarrow\,$ more than 6000 hours for a classic peptidomics dataset

◆□> ◆□> ◆注> ◆注> 二注

9 / 25

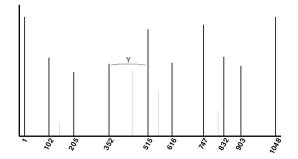
The work carried out

 \rightarrow Implement ProSpect based on SpecGlobX

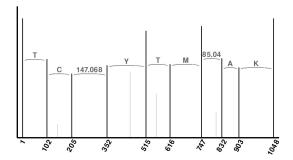

- adapt SpecGlobX to the new context of peptidomics
- significantly improve SpecGlobX performance

 \rightarrow A dynamic algorithm that fill a score matrix

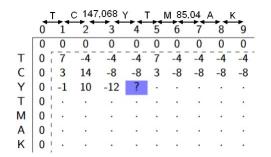
	0	1	2	3	4	5		119	120
	0	0	0	0	0	0		0	0
Υ	0	•	•	•			·	• • • •	· · ·
Т	0	•	•	•	•	•		•	•
V	0	•	•	•	•	•		•	•
Ι	0	•	•	•	•	•		•	•
S	0	•	•	•	•	•			
L	0	•	•	•	•	•		•	
R	0	•	•	•	•	•		•	•


- each column correspond to one peak of the spectrum (120 in average)
- each row correspond to an amino acid of the peptide (between 7 and 25)

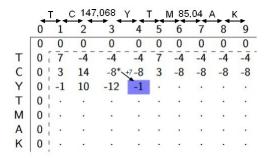
- \rightarrow How the matrix is filled ?
 - the matrix is filled by score from left to right and from top to bottom
 - the score of each cell is based on the score of a cell on its left and in the previous row.


Amino acids in a spectrum

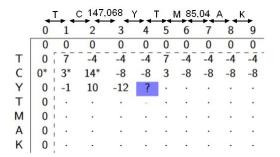
 \rightarrow a mass delta between 2 peaks and equal to the mass of an amino acid indicates the presence of this amino acid in the peptide



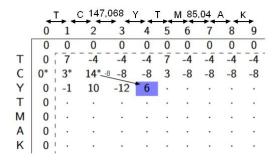
How to align peaks and amino acids ?


 \rightarrow this spectrum can be interpret as the peptide TC[147,068]YHM[85,04]AK (with 2 unknown masses)

- \rightarrow There is 3 possibilities to fill a cell :
 - case found
 - case found with shift
 - case not found

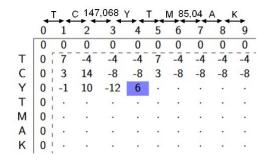


- \rightarrow There is 3 possibilities to fill a cell :
 - case found
 - case found with shift
 - case not found

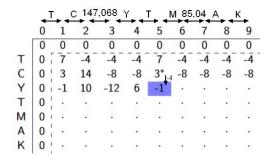


 \rightarrow a bonus of 7 is added from the score

- \rightarrow There is 3 possibilities to fill a cell :
 - case found
 - case found with shift
 - case not found



- \rightarrow There is 3 possibilities to fill a cell :
 - case found
 - case found with shift
 - case not found

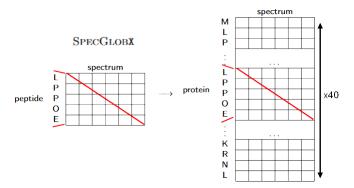

 \rightarrow a penalty of 8 is subtracted from the score

- \rightarrow There is 3 possibilities to fill a cell :
 - case found
 - case found with shift
 - case not found

 \rightarrow the choice which generate the best score for the cell is selected

- \rightarrow There is 3 possibilities to fill a cell :
 - case found
 - case found with shift
 - case not found

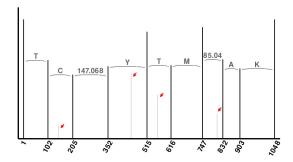
 \rightarrow a penalty of 4 is subtracted from the score

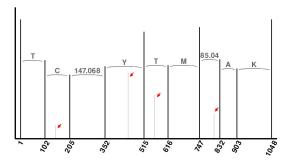

 $\exists \rightarrow$

 \rightarrow when the matrix is completely filled, the cell of the last row with the best score is considered as the best alignment

	Ţ	• •	147	,068	Y +	T	M 85	.04 /		<
	0	1	2	3	4	5	6	7	8	9
	0	0	0	0	0	0	0	0	0	0
Т	0	7	-4	-4	-4	7	-4	-4	-4	-4
С	0	3	14_	-8	-8	3	-8	-8	-8	-8
Y	0	-1	10	-12	-6	-1	-12	-12	-12	-12
Т	0	7			2	13	-16	-16	-16	-16
М	0	3	2	-20	-2	9	20_	-20	-20	-20
Α	0	-1	-2	-24	-6	5	16	-24	12	-24
Κ	0	-5	-6	-28	-10	1	-12	-28	8	19

 \rightarrow the spectrum is interpreted as the peptide TC[147,068]YTM[85,04]AK


How to adapt SpecGlobX to peptidomics ? \rightarrow Move from global to semi-global alignment:


ProSpect

 \rightarrow not only the best score of the last row is considered, but any score at any position can be

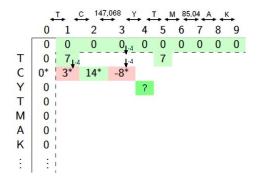
 \rightarrow a large proportion of peaks in a spectrum are useless, there is no need to generate a column for them

 \rightarrow a large proportion of peaks in a spectrum are useless, there is no need to generate a column for them


 \rightarrow reduction of the number of columns in the matrix: by 120 columns to 50 columns on average

 \rightarrow we only compute the score of the *cells of interest* (the cells where the amino acid is found in the spectrum)

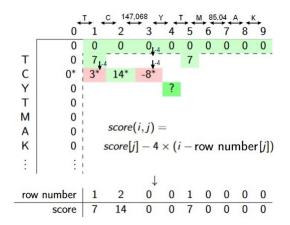
	$\xrightarrow{T} \overset{C}{\longleftrightarrow} \xrightarrow{147,068} \overset{147,068}{\longleftrightarrow} \overset{Y}{\longleftrightarrow} \xrightarrow{T} \overset{M}{\longleftrightarrow} \xrightarrow{85,04} \overset{85,04}{\longleftrightarrow} \overset{A}{\longleftrightarrow} \overset{K}{\longleftrightarrow}$								< →	
	0	1	2	3	4	5	6	7	8	9
	0	0	0	0	0	0	0	0	0	0
Т	0	7	-4	-4	-4	7	-4	-4	-4	-4
С	0	3	14	-8	-8	3	-8	-8	-8	-8
Y	0	-1	10	-12	6	-1	-12	-12	-12	-12
Т	0	7	6	-16	2	13	-16	-16	-16	-16
M	0	3	2	-20	-2	9	20	-20	-20	-20
Α	0	-1	-2	-24	-6	5	16	-24	12	-24
ĸ	0	-5	-6	-28	-10	1	-12	-28	8	19
÷	:	1				:				

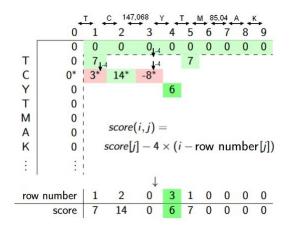

(日)

 \rightarrow we only compute the score of the *cells of interest* (the cells where the amino acid is found in the spectrum)



Problem: the score of a cell of interest is calculated from the score of cells which are not always of interest


 \rightarrow the score of any cell can be computed relying on the score and the row number of the cell of interest above it.



 \rightarrow the score of any cell can be computed relying on the score and the row number of the cell of interest above it.

 \rightarrow Our solution: save for each column the score and the row number of the last cell of interest computed until now

A good memory management

- \rightarrow A huge effort was made on memory management:
 - limit memory allocation and deallocation to limit the use of the garbage collector
 - most structures are allocated once and for all at the start of execution
 - these structures having to be reset between each spectrum-protein alignment, they must be designed to minimize this reset time

The impact of these improvements

Without any improvement:

 $\,\hookrightarrow\,$ more than 6000 hours for a classic peptidomics dataset

The impact of these improvements

Without any improvement:

 $\,\hookrightarrow\,$ more than 6000 hours for a classic peptidomics dataset Now:

 \hookrightarrow approximately 9 hours for the same dataset (47 000 spectra, 20 000 proteins)

Experimental results

 \rightarrow Comparison of ProSpect with 2 other algorithms, including SpecGlobX, on a proteomics dataset:

- 694 spectra \rightarrow the analysis by mass spectrometry of a sample containing only the protein cytochrome C
- a protein dataset \rightarrow the protein cytochrome C and 4403 other proteins

each spectrum identified by a peptide coming from the protein cytochrome C is considered rightly identified

SpecOMS/ SpecGlobX	MS-GF+	ProSpect	
228	192	273	

the number of correct identifications

Thank you for your attention

INRAØ

<ロト < 部ト < 言ト < 言ト 言 の Q () 25 / 25