Approximate Cartesian Tree Matching: an Approach Using Swaps

Bastien Auvray, Julien David, Richard Groult, Thierry Lecroq

SeqBIM 2023, Lille, France, November 20th, 2023

Foreword

- It's about pattern matching in time series.
- Motivations: share prices in stock markets, temperatures, notes in music, GST data in bioinformatics...
- In recent years, new pattern matching problems such as Order-Preserving Matching and Cartesian Tree Matching have been introduced.
- To the best of our knowledge, no approximate pattern matching problem existed in the Cartesian tree framework.

Outline

(1) Preliminaries
(2) Characterization
(3) Swap Graph

4 Conclusion

Preliminaries

Prerequisites

- Sequences of integers
- A total order $<$
- All elements of x are distinct and numbered from 1 to n (the length of x)

Cartesian tree matching (1)

Cartesian tree [Vuillemin, 1980]

A sequence x of length n can be associated to its Cartesian tree $C(x)$ according to the following rules:

- if x is empty, then $C(x)$ is the empty tree;
- if $x[1 \ldots n]$ is not empty and $x[i]$ is the smallest value of x, $C(x)$ is the Cartesian tree with:
- i as its root,
- $C(x[1 \ldots i-1])$ as the left subtree,
- $C(x[i+1 \ldots n])$ as the right subtree.

Cartesian tree matching (1)

Cartesian tree [Vuillemin, 1980]

A sequence x of length n can be associated to its Cartesian tree $C(x)$ according to the following rules:

- if x is empty, then $C(x)$ is the empty tree;
- if $x[1 \ldots n]$ is not empty and $x[i]$ is the smallest value of x, $C(x)$ is the Cartesian tree with:
- i as its root,
- $C(x[1 \ldots i-1])$ as the left subtree,
- $C(x[i+1 \ldots n])$ as the right subtree.

NB: In our examples, we will label the nodes with the values instead of the indices

Cartesian tree matching (1)

x
 4
 5
 6
 2
 1 7
 8
 3
 9

Cartesian tree matching (1)

x
 4
 5
 6
 2
 1 7
 8
 3
 9

Cartesian tree matching (1)

Cartesian tree matching (2)

Similarity

Two sequences x and y are similar if they share the same Cartesian tree, and we note $x \approx_{C T} y$.

Cartesian tree matching (2)

Cartesian tree matching (2)

Cartesian tree matching [Park, Amir, Landau and Park, 2019]

The Cartesian tree matching (CTM) problem is the following: Given a pattern p and a text t, find every factor f of t such that $f \approx_{C T} p$.

Cartesian tree matching (3)

Parent-distance [PALP19]

Given a sequence $x[1 \ldots n]$, the parent-distance representation of x is an integer sequence $\overrightarrow{P D}_{x}[1 \ldots n]$, which is defined as follows:

$$
\overrightarrow{P D}_{x}[i]= \begin{cases}i-\max _{1 \leq j<i}\{j \mid x[j]<x[i]\} & \text { if such } j \text { exists } \\ 0 & \text { otherwise }\end{cases}
$$

Cartesian tree matching (3)

Cartesian tree matching (3)

x	1	4	7	9	5	8	6	2	3
$\overrightarrow{P D}_{x}$	1	0	1	1	1	3	1	2	7

Approximate CTM (1)

Swap

Let x and y be two sequences of length n, and $i \in\{1, \ldots, n-1\}$, we denote $y=\tau(x, i)$ to describe a swap, that is:

$$
y=\tau(x, i) \text { if }\left\{\begin{array}{l}
x[j]=y[j], \forall j \notin\{i, i+1\} \\
x[i]=y[i+1] \\
x[i+1]=y[i]
\end{array}\right.
$$

Approximate CTM (2)

Approximate CTM

Let x and y be two sequences of length n, we have $x \overbrace{\tau T}^{\tau} y$ if:

$$
\left\{\begin{array}{l}
x \approx_{C T} y \\
\text { or } \\
\exists x^{\prime}, y^{\prime}, \exists i \in\{1, \ldots, n-1\}, x^{\prime} \approx_{C T} x, y^{\prime} \approx_{C T} y \\
x^{\prime}=\tau\left(y^{\prime}, i\right) \text { and } y^{\prime}=\tau\left(x^{\prime}, i\right)
\end{array}\right.
$$

Approximate CTM (3)

Reverse parent-distance

Given a sequence $x[1 \ldots n]$, the reverse parent-distance of x is an integer sequence $\overleftarrow{P D}_{x}[1 \ldots n]$, which is defined as follows:

$$
\overleftarrow{P D}_{x}[i]= \begin{cases}\min _{i>j \geq n}\{j \mid x[i]>x[j]\}-i & \text { if such } j \text { exists } \\ 0 & \text { otherwise }\end{cases}
$$

Overview

In the following, let us consider a simple example where $y=\tau(x, i)$ and $x[i]<x[i+1]$.

Green zones

Green zones lemma

The green zones of $\overrightarrow{P D}_{x}$ and $\overrightarrow{P D}_{y}$ (resp. $\overleftarrow{P D}_{x}$ and $\overleftarrow{P D}_{y}$) are equal.

Green zones

x	1	4	7	9	5	8	6	2	3	y	1	4	7	9	8	5	6	2	3
$\overrightarrow{P D}_{x}$	0	1	1	1	3	1	2	7	1	$\overrightarrow{P D} y$	0	1	1	1	2	4	1	7	1

$\overleftarrow{P D}_{x}$| 0 | 6 | 2 | 1 | 3 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\overleftarrow{P D}_{y}$| 0 | 6 | 3 | 1 | 1 | 2 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Green zones

Green zones

Green zones

Green zones

Green zones

x	1	4	7	9	5	8	6	2	3	y	1	4	7	9	8		6	2	3
$\overrightarrow{P D}_{x}$	0	1	1	1	3	1	2	7	1	$\overrightarrow{P D}_{y}$	0	1	1	1	2	4	1	7	1

$\overleftarrow{P D}_{x}$| 0 | 6 | 2 | 1 | 3 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\overleftarrow{P D}_{y}$| 0 | 6 | 3 | 1 | 1 | 2 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Green zones

Green zones

Green zones

Green zones

Blue zones

Blue zones lemma
The blue zones of $\overrightarrow{P D}_{x}$ and $\overrightarrow{P D}_{y}$ (resp. $\overleftarrow{P D}_{x}$ and $\overleftarrow{P D}_{y}$) are equal.

Blue zones

y	1	4	7	9	8	5	6	2	3
$\overrightarrow{P D}_{y}$	1	4	1	1	1	1	2	4	1

$\overleftarrow{P D}_{x}$| 0 | 6 | 2 | 1 | 3 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\overleftarrow{P D}_{y}$| 0 | 6 | 3 | 1 | 1 | 2 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Red zones

$\overrightarrow{P D_{y}}$| | $\overrightarrow{a_{y}}$ | $\overrightarrow{b_{y}}$ | | |
| :--- | :--- | :--- | :--- | :--- | | | $\overleftarrow{b_{y}}$ | $\overleftarrow{a_{y}}$ | |
| :--- | :--- | :--- | :--- |

Red zones lemma

The red zones of $\overrightarrow{P D}_{x}$ and $\overrightarrow{P D}_{y}$ (resp. $\overleftarrow{P D}_{x}$ and $\overleftarrow{P D}_{y}$) differ by at most one.

Red zones

Local

Local lemma
(1) $\overleftarrow{b_{y}}=1$

Local

x	1	4	7	9	5	8	6	2	3	y	1	4	7	9	8	5	6	2	3
$\overrightarrow{P D}_{x}$	0	1	1	1	3	1	2	7	1	$\overrightarrow{P D}_{y}$	0	1	1	1	2	4	1	7	1
\uparrow																			
$\overleftarrow{P D}_{x}$	0	6	2	1	3	1	1	0	0	$\overleftarrow{P D_{y}}$	0	6	3	1	1	2	1	0	0

Local lemma

(-) $\overrightarrow{b_{y}}= \begin{cases}0 & \text { if } \overrightarrow{a_{x}}=0 \\ \overrightarrow{a_{x}}+1 & \text { otherwise }\end{cases}$

Local

x	1	4	7		9	5	8	6	2
3	3								
$\overrightarrow{P D}_{x}$	0	1	1	1	3	1	2	7	1

y	1	4	7	9	8	5	6	2	3
$\overrightarrow{P D}_{y}$	0	1	1	1	2	4	1	7	1

Local lemma

(3) $\overleftarrow{a_{y}}= \begin{cases}0 & \text { if } \overleftarrow{b_{x}}=0 \\ \overleftarrow{b_{x}}-1 & \text { otherwise }\end{cases}$

Local

x	1	4	7	9	5	8	6	2	3	y	1	4	7	9	8	5	6	2	3
$\overrightarrow{P D}_{x}$	0	1	1	1	3	1	2	7	1	$\overrightarrow{P D}_{y}$	0	1	1	1	2	4		7	1
\uparrow										\uparrow									
$\overleftarrow{P D}_{x}$	0	6	2	1	3	1	1	0	0	$\stackrel{S}{D_{y}}$	0	6	3	1	1	2	1	0	0

Local lemma

(c) $\overrightarrow{a_{y}} \leq \begin{cases}i-1 & \text { if } \overrightarrow{a_{x}}=0 \\ \overrightarrow{a_{x}} & \text { otherwise }\end{cases}$

A parent-distance based algorithm

Algorithm 1: DoubleParentDistanceMethod (p, t)
Input : A pattern p and a text t

Output: The occurrences that $\stackrel{\tau}{\approx}_{C T} p$ in t

$1\left(\overrightarrow{P D}_{p}, \widehat{P D}_{p}\right) \leftarrow$ Compute the parent-distance tables of p;
2 for $\underset{\sim}{j \in\{1, \ldots,|t|-|p|+1\}}$ do
$\left(\overrightarrow{P D}_{x}, \widehat{P D}_{x}\right) \leftarrow$ Compute the parent-distance tables of $x=t[j \ldots j+p-1]$;
if $\overrightarrow{P D}_{p}=\overrightarrow{P D}_{x}$ then
An occurrence has been found;
else
foreach Eligible position for a swap do if Lemmas Blue, Red and Local hold then

9
An occurrence has been found;

A parent-distance based algorithm

Complexity

The parent-distance based algorithm has a worst-case time complexity of $\Theta(m n)$ and a $\Theta(m)$ space complexity (where m is the length of the pattern and n the length of the text).

Swap graph

Definition

The swap graph of Cartesian trees for a given n is a graph where:

- The vertices are the Cartesian trees of size n
- There is an edge between two vertices T and T^{\prime} if there exist 2 sequences x and y such that:

$$
C(x)=T, C(y)=T^{\prime} \text { and } x \stackrel{\tau}{\approx}_{C T} y
$$

Swap graph

Lower bound

Number of Cartesian trees

The number of Cartesian tree T with n nodes is the n-th Catalan number:

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=O\left(\frac{4^{n}}{n^{3 / 2}}\right)
$$

Neighbours lemma

The number of neighbours $|n g(T)|$ of a given Cartesian tree T is bounded, and we have:

$$
n-1 \leq|n g(T)| \leq\left\lceil 3(n-1)-2\left(\log _{2}(n+1)-1\right)\right\rceil
$$

Lower bound

Number of Cartesian trees

The number of Cartesian tree T with n nodes is the n-th Catalan number:

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=O\left(\frac{4^{n}}{n^{3 / 2}}\right)
$$

Neighbours lemma

The number of neighbours $|n g(T)|$ of a given Cartesian tree T is bounded, and we have:

$$
n-1 \leq|n g(T)| \leq\left\lceil 3(n-1)-2\left(\log _{2}(n+1)-1\right)\right\rceil
$$

A lower bound for the graph diameter
The diameter of the swap graph is $\Omega\left(\frac{n}{\ln n}\right)$.

An Aho-Corasick based algorithm

[Alfred V. Aho, Margaret J. Corasick 1975]

An Aho-Corasick based algorithm

[S. G. Park, A. Amir, G. M. Landau, K. Park 2019]

An Aho-Corasick based algorithm

An Aho-Corasick based algorithm

Complexity

The Aho-Corasick based algorithm has an $O\left(\left(m^{2}+n\right) \log m\right)$ worst-case time complexity and an $O\left(m^{2}\right)$ space complexity (where m is the length of the pattern and n the length of the text).

Closing words

Perspectives

- Generalize our results
- Use another representation of CT
- Introduce new metrics for approximate CTM
- Filtration
- Average complexity

Thank you for your attention!

